A New Semilocal Convergence Theorem for the Weierstrass Method from Data at One Point
نویسنده
چکیده
In this paper we present a new semilocal convergence theorem from data at one point for the Weierstrass iterative method for the simultaneous computation of polynomial zeros. The main result generalizes and improves all previous ones in this area.
منابع مشابه
On a family of Weierstrass-type root-finding methods with high order of convergence
in English: In 1985, Kyurkchiev and Andreev [1] constructed a sequence of iterative methods for finding all zeros of a polynomial simultaneously. In the literature there are only local convergence results for these methods (see [1, 5]). In this talk, we present a semilocal convergence theorem for Kyurkchiev-Andreev’s methods under computationally verifiable initial conditions and with an a post...
متن کاملSemilocal Convergence Theorem for the Inverse-Free Jarratt Method under New Hölder Conditions
Under the new Hölder conditions, we consider the convergence analysis of the inverse-free Jarratt method in Banach space which is used to solve the nonlinear operator equation. We establish a new semilocal convergence theorem for the inverse-free Jarratt method and present an error estimate. Finally, three examples are provided to show the application of the theorem.
متن کاملIterative scheme based on boundary point method for common fixed point of strongly nonexpansive sequences
Let $C$ be a nonempty closed convex subset of a real Hilbert space $H$. Let ${S_n}$ and ${T_n}$ be sequences of nonexpansive self-mappings of $C$, where one of them is a strongly nonexpansive sequence. K. Aoyama and Y. Kimura introduced the iteration process $x_{n+1}=beta_nx_n+(1-beta_n)S_n(alpha_nu+(1-alpha_n)T_nx_n)$ for finding the common fixed point of ${S_n}$ and ${T_n}$, where $uin C$ is ...
متن کاملA strong convergence theorem for solutions of zero point problems and fixed point problems
Zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated. A strong convergence theorem for the common solutions of the problems is established in the framework of Hilbert spaces.
متن کاملNewton-like Methods with At least Quadratic Order of Convergence for the Computation of Fixed Points
The well known contraction mapping principle or Banach’s fixed point theorem asserts: The method for successive substitutions converges only linearly to a fixed point of an operator equation in a Banach space setting [5], [7]. In practice, if Newton’s method is used one ignores the additional information about the contraction mapping information. Werner in [9] provided a local analysis for a Ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008